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Preface to Chapte s 3 and 4

Chaptefsu3~and A,comglete Paft.I'cf this report.
We would like to call attention to the ‘fact that
-'the 1nformal nature 6f +hese unpubllshed Technioal Reparts
invites an amount of speculatiou whleh would be perhaps in-
_tole:anle in the publlshed llterdture and a ce;taln lOOde-
:hess and crudeness. in derlvatlons and formulatlons uf prob—

'lems whlch a regular Dubllshed work would not exhibit., It
'seems dBSIrable to the authors to make a statement at thls
point concerning the scope of wha? we know and wha 5 we do
not know in the subJect mafter of these two chaptezs.

'?he.reader w1ll qulckly see unat_the subgeet

uatter,of’Chapter 5 is coufined to_the hydraulics of sharpiy
stratified,media, wuereas real estuaries are alwa}s more or

“less aiffusely s_tratified.:' What is more, no aiséfassioﬁ;_i.g,

made:ef>the-prder~bffmagnitude:e¢-the frlctlon terms. }g_

readykﬂate crude approximations of the friotienlterms“(Chezy
and lanning formulas), but we do not have even these approxi-
mations for two layer flow, For this reason the differential
_equations»of zradually varled flow of two layers are for the
most part left unintegrated and all that is demonstrated is
the qualitative aspects of the fliow.

In the case of entrainment of water from one layer
into another we can only perform integrations of the equaticns

when the amount of entrainment is known, whereas in real estu-
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arles we do not have a prloni knowledge pf thls ameuni
?he reader wrll seo, therefore, that the subJeo matter
of;Chapter 3 is really very 1ncomplete;-leav1nv undet°r=
mined all the cons an*s whlch depend upon turbureht mix-
-ing,- upon the frlctlonal stresses on the bottom,—qnd the

free surface and_the walls, and upon the amouht of“entraln—a

ment. B -

The'tontents of Chapter i are- somewhau alffer~

ent. Flrst of all, they contaln summarlea 0r seve al

;alre_dy publlshed papers on the lelng 1n estuarles Most

bf' nese papers have proceeded‘on.the bas1s of hypotheses i

o

about the nature of the lelng process° The appllcabllﬁly

n"es uarles, ahd 1t must be admitted that more werk has

oy el -

been done- that involves Duess1hg what the m1x1ngmprocesses

.,.mt_ e mww R 5 = ‘,__._'.

1n an estuary mlght be, than has been~doner1n trying to"

“an estuary actually

g As 1ncomp1ete as.: the subJect matter of Chapter b

is, 1% is hoped ‘that it w1ll suggest whlch of the p0351ble'5
qlxlng processes in estuarlee may be important in any par-
iticular on6 Which is-the subjsct of;study,_andhthét“it will
eiso suggest the type or observations_Whiehpwill be most
desireble in studying a particular estuary, FPor ezample:
in an unstratified estuary it seems that a more or less

" uyniform spacing of stationsiup-and down the;estuary iz de-
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ut in°an estuary which appeaFs o be subjsct to |

e

Fhe constraint of overmixing {Sectinn 4.51) the location of

;Etations;éhOﬁidwbe'la;gely”con%ihed to control sections.
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CHAPTER 3.

Gradually varied flow.

3.1 The general equation of varied flow.

We envisage & crannel whose axis is orlentcd along
the X axis, whose width is £ (X ). The ‘& axis is dirscted
vertically upward. The ??-.axis is directed horizontally
across the channel.

Two layers of vertically homogeneous liquids flow
in this channel, the lighter on top of the heavier. The
upper liquid, whose density 1s‘f§ (9()) has a free surface at
2= 5 (%).

The interface between this upper flvid and the low-
er liquid layer, whose density is f‘ (), is at & = 2,_ (X ).

The bottom of the channel is at 2 = f, (X).

2= $H(X)

P A7
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For ceonvenience auxiliary gquentities are intro-
duced:

the layer depihs:

Dy = 5,‘;; Dy = 5',_ “53

the discharges per unit widath:

9 = Dyjug q2 = Dpup

and the total discharges:

Q = bqy Q2 = hyp

The steady state equation of motion in the A—dir-

ection is
)
2 pa st 2% -3 3 -2

The viscous term is supposed to be primarily ver-
tical (as migh. be the case in a wide chennel with thin
layers) and it is supposed that /“' the dynamic eddy viscos-

p) “

ity, may be a function of 2 . Thirefore the term Y r.a-z-_-
is used instead of the usual e Vw

The additional term - c'f[“) is intended to in-
clude retarding forces such as might be due to a fine screen,
or pilings, or long grass.

The steady state equation of contiruity is

%{f )+a? (f'v') *5&'@ )

(2)
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Now we know that the following identities hold:

“ - 2 alt) — ;é— “
‘F4&-§%Z 5?;'(f> ) s 2% Cf ) (3)
- ) ( 4]'/
- - 5
.,m-g—'é: = z«& (o) =™ B : (4)
o = w) S LA o pur)
“ T b*—' s o (5)

By udding these thiee the last terms vanish on account of
the continuity relation, and we may substitute the remain-
ing terms of the right-hand member into the left-hand member

of the equation of motion, obtaining the following form:

(f“") -r._.(fur) +.2 (f"“")

oaL (6)
-2 4 (o) -9

We now integrate this equation vertically over each layer.

First, over the top layer:
5 / 33
f (pure7) 22 1 | 5% lpev) o e[

S (7)

/‘at l/¢(M)d%

- ——————— —
..




Section 3.1 (Page i)

The limits ;, and ﬁ are functions of X.

Differeatiatinn of the following integral yields the follow-

ing: P s
| D (putrp)d
S%J[Gau"-rf)d* =fax (r *r) 4
5 o e ) (8)
3 fow / - O (fu. + P /
&; /f +?) z, a7<

The vertically integration equation of motion hecomes:

4 :
‘ ‘ 3‘ sy
= | el a%f e o w O H/
i

5
{ £ >~;/"'
& b wr = s (9)
+ :—f—xﬁ (f“ ?) /S'\ + o /h fkb% 7

- [ ;'ji{u) ALz

Also, we may integrate over the width of the chanrnel hor-
izontally along 27', and dividing the result ‘7 4(«], obteian

the following expressicn:
32 ‘1\.
)

g | >f, e /
= (fu‘+f)di- f;".D:j’.“‘"v'/?:_‘% £ f);
5. ) ; |

/ ' 3 ) g, (10)
] o] ] - [

3
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At the solid side walls

- _ L 9t
w = 2X

Therefore the above equation of motion becomes

o

{\
2] }szruw;;& Dpat - 2t (pwttply
J 4

< | ; ]

|
4-;;f(f\~.4?) s dusiad ]ix = /“1527 v

We now study each of the two layers separately,
Suppose thet within the top layer 4{ 1is uniform with & ,
that is, has a value we may designate as U, . The hbydro-

static pressure is

pregp (572

Therefore
-

f 3
f@u tp)ole = Dpw *§ 3 (12)

 ————— e e tmrairn,




Sectica 3.1 (Fage 6;
If no fluia comes through the top boundary
o 9%
o

w, 2% ' (13)

or more simply

! s 25, = aitadadl (14)
wwr :f, | —
f . ox '
So

U(x)
At the interface = %1 there may bs some flow
of Guep water up into the uvpper layer, so that if C¥qe

is the upward velccity of water penetrating the inter-

face we can write our expression as

5 N A;u 35L L
f““’ - fﬂ*l (ax a“ ft . (15)

o
h

The integrated equation of motion of the top

layer then becomes:

(Df,u. +?f"p) f'“‘LD'
r}f'D'>? =i~ T _/??S{“)d* (16)

where ;ﬂ* al = S,

Wl
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In the bottom layer /7,_ = ; £ D +;f1,(§“-})

>“‘

Iy ;
r .‘:.:.il (pn *P)/ i f"’“"’/’q

[ P

Rha

= 2= ~ / ey
5, g lm) ol

o

This expression becomes

. Y _ , 3%
%Z(D‘f‘“‘ tap D ta0 Ga'g'pa'x

5 (17)
=3 4-f“.“t°03~

Hae D36 %) 5

b o D, = To-T3 - (w)el2
+.%L‘-ﬁf’b“1 W L %

;'-')—(-j (fu +/)‘{* '*';;‘/f“”'d"’ = a;‘ /‘F’u+/'
5]
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3.2 A single fluid: effect of friction

Let us first consider au single layer of water of
uniform densitiy f’ , and consider the surface 32_ as the
solid bottom. Let us suppose that there 1s no ifrictional
stress at the free surface ( I, =9 ) and that there is no

addition of water tn the flow (g, =¢). The equation (1)

then becomes

(1)

- -
ﬁ—(:pifn“.k"’?lo'%) +:(!;2"-Zf'“’pl
D%z,

'f-gfl =
Furthermore, let us first consider a simple chan-

nel of constant width ( ow'/a(’c =48 ). By continuity

cig,/l‘ﬁ’o . The equation may be written

___(.Z-—-«rgcp ) +-53 =7 tL/f’,

A‘,L v ey

" aw,( o +91>) - 3D

(2)

The condition of flow in which ‘éa/dﬂ =0 44

called "uniform flow™ by hydraulic engineers (Bakhmeteff,

1932), According to the Chnezy formula for very wide channels

2, = Cofsa 1 ‘:Af‘/éx
7, * D, CA5a

or



e e e e ————
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where C is the Cnezy resistance fastor determined bty empir-

ical formulias. we designate & quantity #( =12(: as the

conveyance

3o /IK" = s

This corresponds to the case in our formula where

/e = 3P S

(3)

kS
These twe formulas can be reconciled if we write T, = /<Pnua

thus

‘1)3
> Ff¢¢lz = S}_ H<’l=: :
C

We thus see that the deptl of the layer increases

r dacraacaa Aanandine ynAn tho
Qependlr upeL Lae

- M vaTaso )y

bt = o

gion of bhotk numarator an
- - a - N S ba - N b VA WA hd
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denominator. The case where the denominator vanlishes is a

critical one; it occurs at a critical velocity of

Ue '-"y'@—:Do

the velocity of propagation ol a long gravity wave. I1If the

gtream is flowing with a velocitly less thun the critical one,
(i.e., 14;<>14¢ ) the flow is subcritical and the denominator
is positive, For supercritical flow the denominator is nega-
tive. It is interesting to note that for subcritical flow in
a channel with level bottom ( §, =@ ) the effect of friction
on the pottom is to decrease 12 in the downstream direction

and hence to accelerate the flow. The gradually varied flow

in most natural watercourses wopears to be subcritical, and

we will confine our attention tuo such regimes.

g
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3.3 Single layer: widening the channel

Let us now consider the effect of wicdening of the

channel alone on the flow, The equation (3.1-16) becomes

simply .
A © o | &= £ =
M—(W, +3_7-—)+""”‘_j‘— (1)

Now oy continuity

_.fc—(,{,o/) = 4
“ g (2)

Differentiation of the equeticn of motion yields

73N

a)) ¢ ax D

ol aD _ 2. (3)
D *

The result, in subcritical flow, of a broadening in the

channel, 1s to thicken the single layer,

= —— e e

e —
e ———. s St e
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3.4 Single layer: entrainment

If the only effec. permitted 1s that mass be
added o the single layer, {i.e. W, 2% O ) we cbtain

the follcwing equation:
1L
0(. , = :Dl) AL, U =0
A (Dpw™+gp )= v )

This corresponds to a case where water of density‘Fﬁ is
injected into the single layer with a velocity cof Ldz,and
A, per unit width,

By continuity

_Q_(f,fu,) -4-5%- (f:""T) =0 (2)
¢ 5,
/ ";)—i— (prw)elz + £ (3)

O o

This i1s approximately

A
;’;—@""’ﬁ) 225', = fr Y (4)

Now gcing back to the ecuation of moutioxn

28’ :’_‘il ( +:Daf'
D p M CDF)L $ o (5)

—a.Dol‘{/.— U,
+§§D—4+5¢-{—3§" St

i s i ————— ¢+ *
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First considex the case wbere)%_cfy , then

S 2D oLD,
E?Z “uv;~ - Z: s ,])I i ':f% W, W,
T, Dre, 4K # K (6)

The equation for the charnge of D( with X 1is:
o [V ot
2D, £ (o )

L (}D,—j%%f/

(7)

The result is that in subcritical flow, as long
as the injected water is injected with a horizontal velocity,
U, more than the streuan(,, the layer will thicken,
The next step is to compare tihese e€ffects in sczo

special cases where a bottom layer is present.

- e —
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3.5 ™Twc layers: deecp tottom layer

Suppose the deep layer does not move at all, and
that it does nol m;ix with the upper layer. 1In this case,
equation (3.1-17) takes on a particularly simple form:

35,

ol JDLL ——
;—%‘ (_?JD.DI 'f'f‘\ _2_-) —f'D'&)( (]_)

+ (f.'D| -+f1_DL) ;;-" =0

Thus

), .
22D, *ﬁb*ig“f'v‘fze‘*f‘a‘zﬁ @

or

S ED) T (s A) e o

This equation essentially states that the horizontal
pressure gradient in the bottom layer vanishes.
We may now combine this expression with the

equation (3.1-16) tn obtain

Dt Aol u,* D,
PTY PR

Ay




——
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cr introducing

- -C'\ + ~—
- = w o e
OLDl = :D"P' e (5)
ol -
~ 1D — .
5L- 1 ==
D e
The denominator defines a new critical velocity
WUe 2 /;Y.D, which is consiterably less than that for
cne layer flow, ¢ ‘-\/;D, . Velocities of flow whose
u 1
interfacial Froude number f:E safVi is less than unity
!

we may cell subcritical., It is seen that the same general
effects that occur in the subcritical, one-layer case, F; < |
occur in subcritical (referred to Fi ) two-layerecd flow,
except that the behavior of the top layer is, sc to speaxk,

inverted vertically.

- —— e .y
8




3.51 Effect of entrainment

Suppose that the lower leyer is very deep, but that

mixing occurs across the interface. The model therefore is
of this kind:

(i) Thne interface £ = 5;_(1) permits upward
movenent of deep water into the top layer where it is mixed,
but no mixing downward 1s permitted, Thus,.Joz is indepen-
dent of X , but f‘(x)—}fq. as 7 —» o© ., The mix-
ing rmay pe due tc winds, ticdal currents, or the shear devel-
cped at the interface, but in this model it is regarded as
fixed independentiy of the mean flow,

{ii) The depth of the top layer, :I), )is very
much less than that of the bottom layer.

(iii) Within the top layer mixing is so strong
vertically that the density f,('X), the velocity /u,/'x),
are indcpendent of 2 .

MYy wal
“a

~ Andrer AP mivin~ A wo +faw ntn +ha n
LA\ v A ~ oA “A-LA-LAA!D N A PPNA WA bl W ~ AL\

ks

dce
layer is &YJa. . The mass flux per unit width of the top
layer, ]),f%d&, , increases by the addition of deep water
at the rate fzw;‘ so that by mass continuity the following

relation must obtain:

£ (Dpw) = “mp N
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-

If the salinity of the two layers are denoted by J?,
and S, , respectively, the salt transfer per unit width
in the top layer, _D‘u,s, increcses by addition of salt water
from below, and by conservation ¢f sait the following rele-

tion is obtaincd:

%(,D,u..s,) = Wm S, (2)

If the density is simply a iinear function of salinity,

P =f°(l+°45) equations (1) and (2) combine to yield

tihe following form of relation:

ﬁ[ﬂ‘“:) = Yo (3)

Recange c¢f its greatl depin, the velocities in
tue deep layer are small, and hence the horizontal pressure
gradient at any depth within the deepr layer rmust vanish,

This is expressed by an earlier equation:

% (f!j)‘ '*'.f”»?‘&) = (4)




Equaticn (1) simplifies to the fcllowing form:

R aliminal!laAarn Af hatwoan annrct+tinng (
- - — e - .. e [S4-—IR0 ¢ L 84 Cletala we view

following equation is obtained

A f oo D =
= | e (wr+4=v) = °

where ~ = 69,. -f')/f‘l.

The meaning of equation (6) can be explained

easily if we iuntroduce

a function denoting the transport of the upper layer,.

Clearly

v = %g/3

{(8)

where the subscript o indicates values of Y and g at X=0.

B



The equation (7) then becomes

_j’_(-_[_g_':_.:. .Z%Z"_. D'l_i =0
085‘_g]>. 2z gV .j

or if K = é?-yaé?o /QL

or if

Section 3.51{Page 4)

(9)

(10)

(11)

(12)

(13)
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The aumerical values tabulate2 in Table 3.51.1 in-
dicate thu* there is a range cf -g— 05 < 4-(2.0 g LOF
which the depth of t-e top layer decreases with increese of
transport. In the case of Alberni Inlet this is apparently
what haprens, Iorecover, the value of1ﬁ increases rapidly
after a certairn value of the vransport, so that evidently
che lwo layer nodel obredaks down where ad' - 2.0

The velcciuy, €, of an internal wave at the in-

terface is given by

et = 53 7’.Z>,

From equation (12) one sees that the velocity of
the upper layer, %,, is equal to € at the value #2 . At
points further upstream 2, < C .

Tully has comrunicated to the writer the fact
that the internal wave mctions of the open sea do not seem
to penetrate into the twe layer nortion of a dee
estuary. Apparently this point of critical velocity acts
as a block to such deep ocean waves and prevents them from
progressing into the estuary.

This leads to an interesting result. hé mouth
cf the estuary will act as a coentrol so thatd‘=2. at the
mouth. The depth of the upper layer is a maximum at 4-= Q%

this ccrresponds to the place where the velocity of flow is

one halrl the critical velocity.

" e e
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3.52 Experimental studies of entrainment in a twe layer system

In the experimental flume it is possible to add ei ther
fresih or salt water tc the top layer by means ¢t a shower bath
fz211ins onto the free surface, This is an artifice fcr increas-

ing the discharge of the top Jayer alone the axis of flow, It

differs from the natnral entrainment process in e
two ways: (1) In estuaries only salt water is available for en-
trainment, but experimentally we can add either fresh or szlt
water; (2) In estuaries a counter-flow occurs in the deep water
due to thne entrainment, wheress in the rlume the water is added
externally, so that it does not cause a reverse flow in the deep
water, but such a flow can be induced by an auxiliary punp.

Equation 3.57. 11 may be written in two forms depending
on whether the entrained water is fresh or salt.

Fresh water entrained
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These two quantities, ‘P(F;) and Q(F:)are given

in Table }.52.1. This table is perhaps somewhat easier to use

in computing.

The results of experimental runs in the flume are

given in Table 3.52.2.




9

0.

0.25

P o 9 92 o 9

ol

2

Table 3,52.1

P(F:)

0. 00
-0.22
-0.50
-0.66
-0.868
=1, 3L
-2.0
-3.0
-4.6
-8.0

-18.0
-— OO

Sac. 3.52

Q(F:)

+0.33
+0.13
0.00
-0.15
-0, 50
-1.00
-1.74
~2.95
-5.50
-13.00
-_—

(Page 3)

— o —
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River discharge rer
unit width em<sec-l

Shower dischagge pir
unit width cm<sec”

Shower Fresh or Sazlt
D,
D3
2,3
[]
)
'r ’
fu
v

o !

Fe

F“ -
ab, /D

4680/51
) (<D /dg))

F;.
P(FR) e» Q(F)

Table 3.52.2

720
510
1.009
1,018
.018
. 009

. 044
. 502
Sedd
.66
-.16
.30
T S

Sec. 3.52 (Page 4)

Run
2 3
31.4 31.4
12.8 12,2
F S

10.0 10.0
6.0 8.5
1000 1000
510 610

1.005 1.004

1,011 1,014

. 022 .023

. 016 » 013

. 068 . 204

.680 495
-.22 S
.64 .54
-. 34 -.31
+3b .35
.=3.00 o

Primes denote positlon downstream of shower,

11.4

11.4
F
14.2
13.8
2850
2640
1.009
1,009
.018
.018

. 011

(Transition downstream)

. 004

. 0385
=503
.68
-. 04
. 021
«=. 04

. 0049
.C201
+.17
.61
+.25
.0110

.+.50
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3.53 Example of calculation of interfacial depth in a
deep estuary dominated by entrainment.

The salinity of the occan off Alberni Inlet is about
32 Y/oo. For purposes of the computation we choose the salin-
ity of the upper layer es 30.6 ©9/oo at the mouth. The channel
is of more or less uniform width, abcut 1500 m, The river
discharge varies, but we will compute a curve for a discharge
of 60 m?sec™t, This corresponds to a fresh water discharge
per unit width g; = L0O cm?/sec. The initial density dif-
ference is taken as % = 0.025. At the mouth fo = 10%cm?/sec
and ‘ﬂ; = 0,001, The depth at the mouth is therefore given
by the critical interfacial Froude number F{ being unity

there !

n

F. 5 Le

Thus ]). = A.65x1020m.
We may now compute the interfacial depths at

various'points upstream by means of equation (3.51.10):

LR
g'L . O’Y:D, =Q,
D, <

where the constanﬁ.(l is determined at the mouth:

P

C = .g__ch:Dc

e ———— e .+ e}
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A teble of such computations for a few selected
vaiues of ¥, is given in Table 3.53.1. Depths of the top
layer from Alberni Inlet are given as well.

By differentiation of the equation (3.51.10) it

is found that the maximum depth of the interface is:

3, (max) - /.Zé DC.

and that this occurs at the station where
-, - L2éd Y

In the example we are here computing

= ,0013
:qu.) = 57— o i 0




Table 3.53.1

Computation for layer depth
in Alverni Inlet
D, (z. ) s °/co s ©/o0
~,
.001 L. 65 31.0 31
.0015 5.6 30.0 29.5
. 002 Sl 29.5 29.0
. 004 3.9 7.0 28
.012 2.3 16,6 26
. 020 1.8 6.4 i 19
. 025 .5 0.0 | 11
5

*Station is in & widening of the channel,

Sec,

2,53 (Page 3)

Dl(m.)

L.5
2.0
2.0
1.5
4.0
2.0
2.2

2.0

Actual layer depth
in Alberni Inlet

Stat,

» T o v = = O I

&

4
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3,6 Salt wedge

An interesting special case of gradually varied
flcw is +the salt wediie which occurs in channels where the
depth is insufficient to permit the salt water to extend
throughout the whole length of the channel, so that the down-
stream part of the channel has two layers of fluid in it, and
the upstream part of the channel has only a Iresh water layer.
The wedge appears to be a phenomenon in which friction is more
important than entraiament. Moreover, it is important to dis-
tinguish between steady salt wedges and the type of cold
front discussed Ly von Karman (Non-linear engineering prob-
lems. Bull. Am. Math. Soc., 46, 8, pp. 6.5-683). 1n von
Karman's wedge vertical velocities are important, the pressures
are not hydrostatic, and the slope of the wedge surface is
nearly 1l:1. The slopes of stationary wedges occurring in es-
tuaries are likely to be more of the order 1:40 or 1:100,

The nypotiuesis wihich is used In tLhis section Lo con-
struct a theoreticual model of the s3alt wedge phenomend>n is that
the upper layer is turbulent, whereas the wedge itsell is lam-
inar. We snall use equation (3.1-16) which is the equation cf
motion of the top layer vertically integrated in which there
is no entrainment, no free surface stress, and no change in

section of the channel.

L (Des a0 E) sgp D3 e -
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The turbulent stress on the interface is taken to be

-
T, = ®g™ (2)
The fluid ir thc wedge itselil is presumed to be governed
by the Nuvier-Stokes equations, tut the velocities are so
small tnat the inertial terms are neglected., (It will be
ncticed that the inertial terms are not neglected in the
integrated form of the equation ror the top layer). The ;
equation for the lower layer, then, is of the following form:

fr 3% 22

(3)

If it is assumed that the vertical velocities are small
and that therefore the pressure is hydrcstatic, equation
(3) may be written in the following form:

Ly Sft) E S ey
#F\Z % TP *

of =2 J'o/j’x f? T /f“—'ﬁ")/ﬁak

The stress exerted by the upper fluid on the lower fluid

and given by equation (2) must be balanced by a viscous
shearing stress due to the lower fiuid acting on the upper.

.« Vipn O¥o: ot 2 =4 |
& (55
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We may eassume that the veleccity used for (2) in the

oot S0t EPEMECETY), = 7_SF; BY

e e aten) (e e

lower layer is given by the following form:

g 2l
Sy O
T amare

U, = a+rtxT +ex" (6)

in winich case equation (4) tcecomes the following:

>3, 0% ) _ .
TEt -

(7)

and ecuation (5) becomes simply

To = 4 +2ch ]

/ub (8)

If the velocity of _.he lower layer vanishes
at the bottom, A vanishes,

Since we assume no transfer of salt water '
across the i1nterfoce there must be no net flow of salt
water across any section of the wedge.

5

., oAz =0

. (9)
Zvaluation of tinis integral results in the
following relation:
A
- A + S e \
o = 3 = (10,




o

From equations (8) and (10) we can solve for the con-
stant < uand suvstituting this inte equation (7) we
obtain the followin.. forr of the equation for the lower

layer:

5.\ _ 3
g« e5) = T

D= 3-5, (12)

(13)
and equations (2), (1), and (11), we can eliminate all
the variables except .I and 3; so tnat the equations
are now reduced to two equaticns of the follcocwing form:
ks K
/_L__-,) 25 4+ 952 - _ (14)
\'F X X
| 3-._ (déf, ‘_ﬁarz.)_ ’3L

where for convenicnce

o T S S el

RELITY 3 P .




We place the origin of the coordinate system at the head
of the wedge and introduce the quantily _E% which is

clven by the ecuation

We then introduce 2 changa in variable:
a__l = D o)X ) S-r- 2 D’ D_X_.L (12)
d X D % ) 2«x A .
ané rewrite ecuatizns (i4) and (15) in the forms
Lo, ok |k
(F o X o X D, (19)
NS I, 9l»> -2 _}i
O’\F )- ‘-LL * 2x +ﬁ D—; - D° L

L
Zliminzating the quantity ;1;X frox the above equa-

tions, we obtain
A _ o(.))X\_ _ O(k(__.’__ +§_ka’_)'¥)
( /'f I-F/ 9 x i b, \I-F o v (1)

F
where F = /Qg , the interfacial Frcude numver., 1t

~

<

should be noted that ff and /& are nou constants, but

are functicns eof (,z -3, )
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In order tc simpli.y equation (21) so that it
mey) be conveniently integrated, we make the following sub-
stitutions wnich have been suibstantially verified in the

lavoratory:

F L X, =

) (22)

Zguution (21) now laxes the form

D 3 lé;

fr . 2 Dy L -L}

=i
«F,
2

where 52 = ® }[3[2? , the interfacial Froude number

at X=0 . As /12 is a tunction of X only, eguation

(22) may be written in integral form:

A
. )
(/—/\;) - o F, X 1/11 ::%-%- «F, ﬂ,& (24)

3"ll e ° ()

Upon carrying out the prescribed integration
and collecting terms, we obtain as the final equation

which describes the profile of the salt water wedge

5 3 32
_’_A__KF‘O% = %+%A-L *(8'0"(60[).1_3&&3_}&) (25)
2 P
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This equation involves no other assumptions than eguations

{2) and (22), and will thereforz be cersidered exact, I

ct

is vsed to determine the interfacial coefficient of fric-
'

Unfortunately, equation (25) is very inconvenienrt

¢t
[N

(@)

»

witia wnich to werk. Ve sy siapiify the egquation in the
following manner. If & /’fo is of the order 1/10 it may be
considerec small cocmpared to the number 8., &wxpanding the

natural logarithm 1n series and collecting terms we ovbtain

3 3 4
: 19 = g
éz«@-ﬁ:,ékl—z%%*,—o—gh (26)

The validity of this approximate form of equation (25) may
be checked by comparison with the experimental data. A‘ has
teen substituted for ,k in event of a shift elong one of
the axes due to the approximation.

The interfacial Froude number, /f » increases
with increasing X . As E cannot exceed uaity (see Sec-

tion 2.21) we may say

— £ F < | ]
F= R (27)
Ihe cordition that ’f: 1 , therefore defines tne maximum
thickness of the wedge, and perrits a determination of the

maxiium length ¢f tne wedge. The rollowing guantities are

PRIIICFEPHT SR |
3
U TR, Pt I e s St | Eerrap e
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now defined

Z F=/ | x=X

we auy deternmnine the maximum value of l\ froz the

eguation

(& —

~
b8 reo

el =7/3D3(c-k1.33 T (-

[

and therefore

Using equations (29), (23) and (13), we may determine

the slope of the interface at X = XM‘

2%,)

2 X

b oufavs
_ A "_‘(z_i'_.;%,;
- l _'{.o-
Xz X ﬁ /

(128)

(29)

(30)

|
_‘ ey
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3.61 Experimeatc]l studies of salt wedges

The experimental salt wedges in the laboratory
exhibit a form similar to equation {3.6.25), as shown in
Figure 2.51.1. The solid lines indicate the wedpe profiles
deternained by the cbove equation. By fittins the experi-

mental points to these curves, the interfacial coefficient

of fricticn is found to egual
/@ = 00,0036 (1)

The theoretical curves have been terminated at the value
of ),l defined by equation (3.6.29). None of the experi-
mental data exceeded this limit.

In order to fit the experimental data to equation

(3.6.26, the approximate equation, it is necessary to make

4= 0.005 2

Figure 3.61.2 shows these results, the dashed line indica-
ting the curve given by equation (3.6.26). As the approxi-
mation involved the omission of a number of terms multiplied
by oLfi, it Zs not believed that ‘E! bears any significant
relation to }{ .

The solid line in Figure 3.61.2 indicates the
fcllowing empirical rclation found prior to the foregoing

theory
eyl

kl:_' 0./5'(-%060) (3)

SO . |




A further check on the theoretical analysis
weuld te that the velocity in the viedge te approximate-
ly correct. The maxi~um upstreanr velccity accurs at :¥7§

and

&
4
U, - _ =5

—

— e —————e -y
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3.7 ‘"he very viscous estuary

Certain estuuaries, though stratified, are so
turbulent that the deep layer is diluted witan fresh sur-
face water. Tnese estuaries (Type 2) differ from the
deep-fjord estuary (Type 3), and river outlet (Typec 4)
in which the bottom layer is undiluted.

Continuity principles show that whereas en-
trainment can occur without turbulent flux across the
interface, turbulent flux must be accompanied by entrain-
ment., This and other matters are discussed in Section
L. 6.

In this chapter the interesting feature of the
very viscous estuary is that inertia terms may not be im-
portant as compared to friction and pressure terms. An
elementary theory of such a case moy be developed as
follows:

Tie dynamicael egquaticns {(3,1,16) and (2.1.17)
may be simplified to the following forms if inertia terms

are neglected. o
D)),

A Pl\’ lDa S :_K{/ZL,-/L‘L)
d—z(gf,f +# 7 o

L DI o fan,-Ue
PR T By Pt L e
ALY >
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where the frictiocnal stress has been written in the form
'(,’,__ = K (’“' ‘u") . It is convenien® to write the

equations with Z as independent variable, and let

2 /</(0(; /A{/ where 3

= - Q)/ki,—14E)
ag /}F )’*gf' ? (21)

Addition of thecse two leads to the simple re-

sult that

: [?,D*Du +@x—f,)P£;J

(3)

Tuis eyuation siwmply stailes that in the absence of
bottom friction the vertically integrated pressure force
aoes not vary with 7( .

Now in a Type 2 estuary, with reasonably large
value of U, the term A(Pz-ft)/& is small compared to
the others, and in meny cases so is QD; /2 ai, so

that the principal balance is in the form

ol /‘Dl"‘p")‘L =0
ZE:(P' 2 (L)

'
e — L ]
%




Section 3.7 {Parce 3)

or quite simply

A5 1 3p, (D4D)

-

le f‘a.il i {5)

If wc suppose tnat the density is given by 2 simple lew

Q
kb

B rre f =/:° (/,‘4o<$/) tien
o5 Z ;Sl ) CD‘-'D__).

(6)
>7, 2?, et

From equation (4.6.3) we can now write

35, D, +D t _
%ng( Y ).?'(Hﬂ”(s‘ S‘) (7)

Now from the dynamical equation (2)

T i LA

e

-
1f we eliminate AJ./;{‘ between ecumrtiviis
(7) and (&) we obtain an ecuation giving , in terms of

the observed salinity distribution iin a Type 2 estuary):

L D.+Dd.) D (147)
Z' ;a"‘ [ -~ 2 fv’ ([\_-f,) ()

- o e ——— s < = ]
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This equation, despite its restrictions and its
approzimate nature, is very remarkable. I1If we consider
any Type 2 estuary, we can deduce the discharge 17, , OI
the non-tidal velocities, "W, , from the salinity distribu-
tion, even though we do not know the friction explicitly!

The alternate form of (9) is as follows:

= é?°<(])-+th) —-:;" (5Lv ) (9')

B

An interesting corollary of the equation(9) is

that, for large ’7

(.51.‘5',)3 ~ ‘D,L fD:_f’DL

Sreny ol (10)
% ?' z T

or, as in most Type 2 estuaries, if iD. o= ])L % 4&'

(s,_ P~ g7 e // ¢ (107)

'L



Section 3.71 (Fage 1)

3.71 Example. Dyvnamics of a Type 2 estuary.

Pritchard (1951) has discussed in detail the nu-
merical mesnitude of various terms in the dynamical equa-
tion for the James River estuary (for the discussion of the
salt traznsfer equation of ioe Janpes, see Jsection 4.61). The
dynamical equaticn for the x-componenst is averased over
time, a steady state 1is supposed, and the fcllowing torm

obtained:

3= § oK & (1)

pmA——
By analogy to the fact that he found & 'S’ necligible,

(Section 4.61) Pritchard infers that 3%? (MJ‘) is also
negligible. tence, the vertical eddy flux of momentunm

mey be solved for in the form

- R -

TS I -l — ik . | O
alwrt = __::;: J{L}'(&Lézz+¢4f e +}°éﬁ€ oAz + L (2)

Ry
Unless the elesvation of the free surface is known, -—_ £

S 2Xx

is known only with respect to a constant fixed at some

————

level iﬁ . However, Pritchard assumes that »'w! yan-

ishes at both surface and bottom (the latter assumption
p

being by far the weakest) and evaluates '@’ numerieally
from equation (2). The results for a single station are
plotted fm ¥Pigure 3.71.1.

SR < |
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figure 3,71,1 The vertical cddy flux of
horizontal momentun as a functicn.of depuh,
at a sample station in the James River
estuary, .- ’
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4.1 ILiixing processes in estuaries

Very little is known for certain about the mixing
processes which actually occur in estuaries;_so that most of
the work done tc date has been hypothetical. These hypothet—

ical studies are essentially an attempt to explaih_the obser-

ved distribution in the estuary of a property like salt on

+he hnaia cf': acgm

nt+ 3
“i s v

el ake ~ 4 - -
4 \Lind LA v

out vhe miXing. The melbods of

the tidal prism (4.2), of mixing in segments (4.3}, and of

_arbitrarily defined eddy diffusivity (4.4), are examples of

“this hypothetiCél approach. ' ' e s

From the practical point of view of computation

.of pollﬁtion, numericel processes seem more likely to be of
use_than,idealizéd hypéfhetical mixiﬁg thébfies, Secticn
Aouéf;s ;h éxample of\?he ngﬁe;ical process applied to an

~unstratified estuary; = ‘

- ~4n inferesting feature éf'mixiﬁg in stratified
estgaries is the.cdnditiqq-pf ﬁovermixing" whiech is dis-
cussed in Sections 4.51-3. This EeaRe may turn out to
be a very useful one in the study of'eétuaries becauss it
does not depend upon the detailed nature of the mixing pro-

cess itself.



Sec. 4.2 (Page 1)

4L.2 The tidal prism

The first rough approximate method of determining
the saliuity of a tidal estuary from a knowledge of the tides
and river flow is Lhe "tidal prism method™, long in wse by
engineers (letcalf and £ddy, 1935) in harbor studies.

Denote the high-tide volume nf the ocinows b= ‘.4, ,
the low tide volume by VL s tke voliume of river flow per

tidal cycle by R . The tidal prism is defined by

P: \lH_VL .

1f the river water is fresh, and the salinity of the
ocean is O, the salirnity of the harbor is obtained by the
assumption that on each tidal cycle a volume P of water of
salinity 0 and a volume R o' fresh water, mix thoroughly in
the harbor, and that a volume P+R of the mixture is ex-
peélled., The salinity of the estuary is therefore PG"/(P"T\’/‘

2 Aer o b oo
in the steady state.
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L.3 #&tefinements of the tidal prism method

Ketcnum (1951) has suggestec that the primary weak-
ness of the tidel prism method is thet it assumes complete
mixing over tne entirc estuary during each tidal cycle., He
indicated that an estuary should be divided into a number of
segments of a length approximately the local displacement of
the tide in each of which mixing is complete. Before discuss-
ing Ketchum's theory of the exchange ratic we will first dis-
cuss va;ious arbitrary ways of dividing the estuary into sce-
ments, some of which may be useful in cases where estuaries
contain several isclated basins; and show how dependent the
results may be on the exact pature of the mixing process.

Suppose that the estuary be divided into arbitrary
segments, in each of which mixing is complete. The low-tide
volumes of each of these segments are denoted by \LL , the
hign-tide volume by (th *'\An.

The gegment M =0 is define

[$7

tc be that where the
quantity Po = KR being the river discharge per tidal cy-
gle.

If fi is the fractional concentration of river water
in the nth segment at aigh tide, then the fractional concentra-
tion cf sea water in each segment is /"J:at high tide. Let

g”n.be the fractional concentration of fresh water in the

nth segnent at low tide.
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The rise of level in segmant 7 =@ during flood
tide may be assumed to be due entirely to river flow, thus
{ = | . Since there 1s no flux upstream across the seaward
boundary of the Otk segment, also ;a s | .

We now evaluate the flux or volume and fresn water

across both the landward and seaward boundaries of the nth

segment:
Volume Flux Fresh Flux
Ebb - Landward boundary Un Un '?n-l
Seaward boundary Un+! Un +1 “"l
/
- —(va-R) 3™
Flood - Landward boundary -~ (va R) (vn 3’

- ’
Seaward boundary - (Unﬂ o R) - (Unﬂ R)} n+l

Tne freshness of the water flowing in the flood tide is

/
given by ? ~

et «=n=|
Un = E Pd R =—R
(=0
At nigh and low Volume of Totel Fresh

nth segnent water in nth

High Pn + V,, (Pn + VA) j:gment
Low \/m Vn 9n

The first relation to be satisfied 1s that the

flux of volume across each boundary be R cach tidal cycle,

D
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This is clearly so since at landward boundary:
Un — (U" -R) =R
and at seaward boundary:

Un+1 — (un*l-R) ER

The nex: relation is that the rlux of fresh water

vniume ecuch complete tidal cycle by‘Fa . Thus at the land-

ward boundary

vatio = (vn —R)?flr\ =i

and at the seaward boundary

'Pn - (u,,,, _’R)}/it+[ - R (1)

Vne+ |

)
?ﬁ‘ and.jb“are in general different, and equal only when

mixing is complete on low tide. 4s a matter of fact, the
second eguation follows from the first by induction.
By conservation of fresh water the change in fresh

vater content during the ebb is:

?m«vm, - £, (P,,*V..) = Up Fa-y = Vsl *a (2)

——— ey e -]
ad
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and during the flood is

‘?e,, (Pn *Vn) "gn M‘ R o (Un'R)}o’n'*(/Uhﬁ -?) };HI

(2')

A number of different results may now be obtained,
depending upon the precise nature ol the mixing process
supposed.

Mixing process 1. Suppose no mixing occurs at

low tide so that on the flood the water flowing across each
boundary is unchanged in properties. Formally this is equiv-

alent to supposing that
/

(1)
Substitution of this into equationashows that for this pro-

¢ege the only possible stesdy stete ig zne in which 4&" /

(¢4

Mixing process 2. Suppose mixing occurs at low

tide and the segments are quite large so that in the limit
é’:;u = 1é;~

If there is a certain value of 21 , say ~»~t 29" which
lies in the ocean then it 1s certain that there }//m < -f,,, =0
The values of feb at segments further upstrear may be cal-

culated by equation (1).

—— e

— e
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Ven 4Bn1-l =R
(Um- -R)f tR

(4)

Uy Fm-z =

ete.

There is no difficulty in satisfying the upper boundary
between segments O and 1.

Mixing process 3. JSuppose all the water that

moves on the flood is ocean water in the form of a wedge,
/
then ?4«.’0 and the -f:' at the nth segment is computed

by

Uns| $q = N

Mixing process 4. Suppose that mixing occurs

at low tide in eacn segment as well as at hligh tide, thus

/
3“ - ?M—
There are two relations available: equations (1) and

4
(2), between which ?,‘ and g,., may be eliminated, thus

yielding a recurrence relation in 4: and <p,o; -




(6)
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4.31 Exhange Ratio

Ketchum (1551) has introduced a special type of
segmentation which seems to this writer to be the most
reasonable "a priori™ for unstratified estuaries. 1In our

notation, it consists of defining V& in terms of the up-

stream segrents:

\‘1 = U, *-\VC

(1)

Moreover, Ketchum has introduced a quantity Ow,

called the exchange ratio, defined in the following way:
r, = ?.-./(R +Va) (2)

and has postulated that the total amount of fresh water

in the nth segment at high tide is given by thz follow-

ing relation:

£(RtVa) = R/ ra

(3)

In our notation this is tantamount to the following deter-

mination of

5= R[F

(L)

1)
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This result is different from the results of any
of the four examples of nmixing processes ziven in Section
4.3. In order to illustrate these differences a very simple
Lypothetical example is worked out here.

Example, Consider an estuary which has segments
N =0, 1, 2, 3, but beyond thes2 is connected to the sea,

The segmentation 1s taken as being that of equation (1)

~ 0 1 2 3 I

Pn 1 2 2 3 Ocean

Va 2 3 5 7 Ccean Table 4.31.1
VUn 0] 1 3 5 8

The method of ketchum gives the following values
of 4; by equation (4).

N 0 1 2 3 L
18" 1 1/2 1/2 1/3 O Table 4.31.2

Mixing process 1 leads to the result that all
values of 'ﬁn =)

Mixing process 2 clearly is not applicable be-
cause the segments as given by equation (1) are clearly not
of a size adecuate for the 1imit to be reached. MAixing
proce3s 3 leads to the following values of 'fn by equation
(5)

.fn 1 1/3 1/5 1/8 0 Table 4.31.3

P




Liixing process 4 leads te the following ejuation:

(Vn“ o)(vo*R)'ﬁn-n —(Vh-v‘ -R) v..r" =’th (5)

The value of T3 mnmust be determined by the equaticn

L.3.1, where ?4} s 0

m 0 1 2 3 i
(Vn-Ve ) (Vo +R) 0 3 G 15
Ve (Vi - Ve=R) -2 0 L 8 Table L.31.4
Vi 2 3 5 7
1 107/135 8/15 1/¢8

]

By using these different hypotheses regarding the
mixing process, the salinity distribution in the sample es-
tuary is quite different. Had we used some method of segmen-
tation other than Ketchum's, it would have been different from
any of the above. For example, the mean‘# of the estuary

by the tidal prism method is 1/8.
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L.Lh A mixing-lensth theory cof tidal mixing (Arons and
Stommel, 1951)

Zonsider an estuary of uniform width w , depth F4,
length L_ . The origin 1s placed at the river inflow where
the salinity is maintained at S=0 , The U -axis is dir-
ected positively downstream. At the seaward end of the es-
SEary. L

preE
. v

. 2~ ~3 ~d PN B -
J AU sl VRA LU A Vv viiQ 4

cif tre
open ocean $S=C .

The river Jdischarsge is,]) {cu. f4/min). The mean
velocity of water in the channel due to the river is5 there-
fore 4 = D /w.H

If the length cf the channel is small compared to
a quarter tidal wave length, the tide will be simultaneous
and uniform over the entire channel, a2nd we may express the
height of the tide as j‘: ]:, Coe wl , where w is the an-
gular freaquency of the tide.

The tidal current Uis obtained from the equation

of continuity:

3Y /ot == H /3%

(1)

U = Uo 5"'\“'“1-

12)

where

U, = $aw?/H
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The average tidal aisplacement, S , is obtained
oy integration of the tidal velccity

S » So ant

(L)

waere

5. = - fx/H

l

We .ill consider the equation describing the mean

salinity distribution:

bs/dt = tuaS'/dx = a(A 35/37‘)/")7‘ (6)

In this equation S is the time mean salinity at

any poiat ’/‘( , W is the time mean velocity at X , wnich we
mey take as that portion of the flow due tc the river (that
is, =4 ), and A is eddy diffusivity along the X -axis.

e express A in terms of a dimensionless num'oer_B , & char-
acteristic velccity which we take at the tidal amplitude [;r "
and a characteristic length which we take as & s, , the

tctal excursion of a particle due toc the tides

/x - EE:EB‘S; IJ;

(7)
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Tais form of diffusicn ejuation recards the tides
as a turoulent mution superposec upon the steady river flow
tnrough the estuary. The simple assumed form of the eddy-
diffusivity coefficient is the equivaelent of Ketchum's
assumption of the dimensions of the mixing vclume., It should
be clear to the reader that the simplicity of both of these
formulations results from a certain vagueness about the
puysical process involved; the effects of stratification,
stablility, vertical mixing, bottom roughness, and otker in-
fluences are not investigated.

In the steady state the time derivative vanishes,

and (6) is integrable

3 = /4'«315/‘dh¥ + <2¢

(8)

where C is a constant of integration. At “‘X=0, toth S =0
ana A o4 /Ay =0  vecuuss thers can be no transfer of

salt up.the river by eddy diffusion; thus the constant of
integration C =0,

From (3), (5), and (7) we see that ;\ may be ex-

pressed as a function of /X

A=2BLwx*/H*

(9)

It is convenient to introduce a dimensionless par-

A £ X /'L-

aneter

(10)

W g
.
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to express the distance along the channel in fractions of

e —————

the total length, and a dimensionless parameter
T L I

F= a H /(Z,ES 5, 0w L |
(11) ‘ I

i

which we may call the "flushing number", !

Making these various substitutions in (8) the
following equation is obtalned:

Fs = 2t 4‘5:/4";’

Integration by separation of variable ylelds i
the following expression:

lns = F/2 +C/

av A=l , S8 | so that the constant of integration 4 |

is given by '

C"' s F <+ /N

Therefore, it is possible to write the ratio of mean sal-

inity to the ocean salinity is expcnential fora

sl = e F(I -1/3) (12)

The family of curves on the relation 2 to 5/0""
is shown in Figure 4.4.1 for the wvarious values of the
flushing number F:.

Empirical data for both Alberni Inlet, Vanccuver

Island, and the Raritan Riber, New Jersey, are plotted on
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this figure.

Thae fanily of curves 1s interesting for seversal
reasvus: (1) There is a toe to the curves near A O
(2) Thne curves are voery sensitive to F in region 0.1 £ F & 10,

(3) There is = point of inflection at A F/Z_ .

Convenient alternative forms of the flusiking numter

DH* DH'T _ _RH®

2BSwyY  4TB&YY 4nBS*

where _D is the river discharge, T is the tidal period, \/is
the mean total estuary volume, and? is tkhe river discharge
per tidal cycle.

The curves vresented here were developed for a
very much idealized situation., For that reason it is some-

what surprising and encouraging to find that empirical data

from actual surveys can be plotted on

11
.. N Ve - - A aa

good agreement,

An attempt to calculate the proportionality fac-
tor E3 from the data was unsuccessful, the values heing of
an crder of macnitude different for the two cases. There-

fore, it cppears that although the shape of the theoretical

[
3

curves is

rod
~—

=}

0od ag

&

eerent vith the obgervatlions at hand,
an a priori calculation of the flushing number is not yet

feasible, INevertneless, the flushing number may be a con-
venient concept o characterize estuaries, just as the fam-

ily of curves theniselves is a convenient, semi-empirical ex-

vression of the mean salinity distribution.

e )




Sec. L.4 (Page 6)

If the mouth of the estuary is not taken as >\' I
obut some point ), (0( ), < I) further upstream is
chosen as the ead point, then the graph may still be

drawn, btut the flushing number is different.

F("‘;T)

The salinity
S, at ), is given by

S‘ /( - e
: _ A
.f a new running variable )f = ‘;"‘ is intro-
'
duced
E !
DY <] T 4>
<. =z e ‘
3

The result of changing the iocation of the "mouth"™ is that
the salinity distribution is still of the same family of

curves, but with a different flushing number F: z F/)‘ .

e i e e e
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4.41 Lixine in estuaries dominated by evaporation and
precipitation.

ccnsider an ideslized estuary as described in the

previous section, 1f EE is the evaporation from the surface

bl
in ci/sec”™, the rate of change of salinisy,'s , will bpe

civen by: E;

H

In the casc cf precipitation, E; is negative,

A current is set up to compensate for the evap-

orated water

w= —Ex/H

The diffusion of salt is governed (as in equa-

tion 4.4.9) by a coefficient of eddy diffusion
2
A = kx

where

k = 285““//-/"

The steady state transfer of the salt transfer
equation is given therefore by

k_;'é "-_f£5_+E "['54--——58‘0

M Mm T H M H
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This may bLe simplified to the form !1

‘LOL_LS 0‘5 = I
’X = -ra'#;‘-/t—-r{-s o

where

oL = 2

E . = |
4 = = |
K H kH

This is a form of Buler's equation.

!
By substitution S$= 'Xr.and eliminating the common '

factor xr_we obtain the algeoraic equation '

/u(/.t-l)-ka./&-f‘d’:O |

the roots of which are
/Ja‘ -"4" -/ i
The sclution of the differential equation is then

S = C,«—’ “’cly-&

The boundary conditions are that atX= £ , S=o—

e i i e

and also that the net salt flux vanishes, i.e. 8§ =C¢ and

us'Ai-s— at xe=[l

or -

Let
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The equutions which determine 12 ahad ])t axe
— = D, +D,
/J-‘U'_ = J)' 'f“é'D;_

from wnich we obtain 5 MR > ; D, =27
The solution is
-~ -4

-§_ - \
r

In Figure 4.4.2 this function is plotted against ;\
for various values of ‘6- The quantity, J—, plays the
role of the flushing number F: for estuaries whose salinity

is governed by a balance between tidal flushing and evapor-
- 2
4B " ew

Figure L.L.3 shows the function plotted for neg-

ation.

'6,:

ative E: , that is, for precipitation.




/0

1.0

w310

FIG. 4.4.3
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L.42 Uniform mixing along an estuary

I? tne mixing in an estuary 1o not caused by the
tides, but by the wind, for example, the eddy diffusivity A
is not likely to be given by a quadratic law, but may be coa-
stant. Under these conditlons the salt transfer equation is:
. -
ks . A xS

“ - (1)

The toundary conditions are that at X=( , the mouth of
the estuary, S ®¢” and

as = e (2)

The integral of this equation is:

AL (2-1)

- e - St &

- r— e s
D
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L.43 kixinz in a Pillsbury-type estuary

As shown in Section 6.5 there is a particular
suape estuary in which the deptn is constant, and the
breadth is cf an exronential shape in waich the tidal vel-
ocity is independent of X', tne position up c:d downstream,
liany natural estuaries approximate this shape. It is or in-
terest to eitend the theory of tidal zixing curves of Sec-
tien L4, vwhich apply to a chanrel of uniform cross-section,
to the spccial case of the Pillsbury-type estuary channel.

First of all, the eddy coefficient /4 is constant
in a Pillsoury-type basin because both A and jf are both
independent of %X

§a= Z’L“/w

Thus the relation given in equation (4.4.7) is changed to

the following constant form:

A = 4Bt [w (1)

The total flux cf salt across a transverse section is given

by
s
as - Pucialiond = O (2)
/627{ [j /x ‘th
CUX( 5:
where i ~ (see Section 5.5)

4 = €

1)
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and the other cuantities are defined in Section L.4. The
local uon-tidal veloclity Q. is given by Qa = 0‘#&
wiere g@’is the river discharge.
Zquation (2) thus becones

A - H4A iﬁz‘i = o&s

[ ol

This integrates directly to wrSo X
S _ 4Bu G 3,
o (3)

Tais may be wiritten in a form exactly the same as

m (1 -4

equation (4.4.12)

S =
p— e

but in this case A\, = "'/é and
e _ o4 . 704

R Bu4 %  4Bwl. L 4Bud %

where L, is the distance upstream from tae mouth where
4 :»{-‘/e or ‘é, is the distance upstream where 4:'1—/4;.
Thus we may use the same family of curves as shown in Fig-
ure 4.4.1 for the Pillsbury-snaped channel, only F.,. and
)\ are redefined.
For a quick evaluation of the F'-, it is convenient
to locate the value of A /,63 where :/a’ has some given
value, say, 0.5. luole 4.43.1 gives the value of F, for

various vaiues of a, at &fv = 2.¢

Ll Dhivim

e T e e




TABLZ 4.43.1

r
|

0.9 6.3
0.8 2458
0.7 e
C.é 1.0/
9.5 69
0.4 <46
0.3 .21
0.2 s L
0.1 .08
0.05 . 037
0. 02 .Cl4

001 . 007
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4oba  sxamdDic oi sorizontal mixing theory: The Severn

‘Mie data available for the Severn Zstusry (7.11)
is acequate to test the various theories proposed in the
previous sections. First of all, it is clear that the 3ev-
ern is an unstratified Type 1 estuary, to wiich the ideas
of hori:oantel mixing ought to apply, if they are correct,
We will .omn-te horizontal salinity distrituticns on the
basis of Ketchum's Exchange Ratio, and on the basis of the
Arons-5tommel theory. It will be shown *hat neither of these
methods work for tne Severn. The infe.ence appears to be
that the mixing length involved is not even remotely similar
to the tidal displacement in the Severn, but is more nearly
the depth,

The Severn by method of Section 4.3l

The volume of water in the Severn Estuary was com-
puted from the data given by Gibson (1933). TFigure 4.LL.1
shows the accumulated volume of water from Gloucester to sea-
ward at high and low water during Spring tides. For March,
1940, the average river discharge (Figure 7.11.2) is 2,600
cusecs, which is equivalent to l.2x108ft3/tidal cycle. Tte
segmentation of the estuary is started by recalling the defi-
nition of the ~mM. =0 segment, —P.,= R , and, using equation
(4.31.1) the subsequent fz and.\L,volumes may be readily de-

termined. The following table summarizes the calculation:

o ——— e —— ——— —nrf
.
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IABLE 4. 4h. )
e = 0 1 2 3 Ccean
2 3
P, z10° = 12 8 91¢ - £t
=8 >
Vo x07¢ = 2.2 3.3 92 1000 £t
RiP. - £. = 1 0.01 .001 -
S, %/oo = 0 %2 32 = 32
From Fig.
7ddo 5 S:,O/oo 0 8 16 32

From the results through Segment 2 further calcu-
lation to the ocean is not warranted.

The freshness, —;;, and salinity,:z\, are the
average values for the individual segments, For compari-
son, the salinities from Figure 7.11.5 during winter spring
tides are given. 1t is evident that the salinities computed
by the method of Section 4.31 are greatly in excess of those
observed,

The Severn by method of Section 4.43

It i1s easy to sece that Figure 7.11.5 may be
plotted on a flushing number graph (Figure 4.4.1). When
this is done it is found that f3 is of the order of magni-
tude cf 10'3, for both summer and winter. The tidal excur-
sion is of the order of 150,00C feet in the 3evern. The

mixing length, therefore, is no more than

b

50 f=2ct, As a

result the hypothesis upon which Secticns 4L 4 to 4.44 is

e Y
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based is 3imply not suvisfied. The mixing iength appears
to be more certainiy related to the depth. Upon reflection
the reader will probatly agree that this seems more reason-
able anyway. Instead of the mixing being done by huge hori-
zontal eddiec, several miles in length, the mixing is done
by small "boils" or eddies resulting from the cshearing flow
over rne bottom. Jln order to demonstrate thic Tfact more
slcarly we have considered the Severn in more detail,

The stcady state distribution of salinity is a bal-

ance of diffusion and advection:

as = A %S
AL

where the X -axis is directed downstream, S is salinity, AC
is the mean river velocity, and /‘ Lhe coefficient of ciffu-
sivity. The quantity ®-at any X may be computed from the
river discharge (§ divided by the width w~and depth 4 of

the estuary:
a = Q/“’oc

The diffusivity /4 may be written as

A= Bldwv
where U is the amplitude of the tidal velocity and is
the depth.

In this case

B'= (Qs) [ (wret™ itdx)
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/

We computed the vslue of E; at, ceveral points in

the Severn from this formula.

TABLE 4.Lk.2

Weston Portishead Augt Sharcness Arlinghan
w- (feet)x10° 46.0 26,0 6.9 5.2 21l
oA (feet! 70 60 50 265 15
g~ (ft/sec) 2,6 2.5 &5 8.5 8.0
Winter
S (%/oo) 23 16 8 6 L
oz Jdd (©/ooxich/ee) 0.6 0.8 0.8 1.0 1.2
Summer
s (°/co) 28 27 25 20 18
pu/ol,(( Joox10*/ft) 0.2 0.2 02 0.8 0.6
B’ winter 0.6 0.7 1.5 9.0 5.0
B' summer 0.3 0.7 3.0 . 5.0 6.0
Winter Cl £t3/sec 2600
Summer 6} £t3/sec 360

The Raritan River

The Raritan River is the chief example given by
Ketcnum (1950 to illustrate the hypothesis of the exchange
ratio, It is interesting to determine the mixing length at

several stations similar to those discussed by him.

.
R TPy R -
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Staticn (1; 5 miles upstreew of South Ambdoy

3tationn (2) South Amboy
Station (3) 3 miles downstream of South Amooy

The river discharsze used by Ketchum is 23x106£t3/12.5
hours, or 730 ft3/sec. The tidal velocity is about 1.5 knots,

or 2.6 ft/sec.

Station 1 Staticn ? Station 2
Depth (ft, ) 9 12 18
Width (ft.) 3600 7800 24,000
S °/oo0 10 25 26
As fay  °/oo/mt b it 0.4 0.2
at:/d)( °/00/ft 0.7x10°3 0.7x10"4 0.3x107%
Mizing length
in feet 128 1100 560

The mixing length is clearly much greatcr than the
depth, but not as large as the tidal excursion,

The reader will see that whereas the mixing length
in the éevern is of the order of magnitude of the depth, in

the faritan it is much larger, but not nearly as large as

the tidal excursion.
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4. 45 Horjzontel tidal exchange through an inlet.

A constricted inliet may be expected to act as an
efficient tidal exchanger because of the tendency cof the
flow into it to be potential, whereas the flow out is jet-

like, as indicated in Figure 4.45.1. As a result, one

Eetvary \r should expect that for
4 the most part, tke
Floed ,"5\\ A— water passing through
r——— } \ Ebb the inlet when the
Ocean ‘\,4\ current reverses is not

the same as that before
Fiegure 4.45.1

reversal.

Let us consider the following simple theoretical

picture: an inlet of width & (Figure 4.45.2). For sim-
a

plicity we assume that
the depth J) is uniform

hoth in the inlet and

throughout the estuary,
o The discharse on the ebb
is from a semi-circular
region of radius 4& , and
Figure 4.45.2
amounts therefore to
-
%E éL l) . The flow during flood, which occurs in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>